EU Artificial Intelligence Act: The European Approach to AI

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 2/2021

New Stanford tech policy research: “EU Artificial Intelligence Act: The European Approach to AI”.

EU regulatory framework for AI

On 21 April 2021, the European Commission presented the Artificial Intelligence Act. This Stanford Law School contribution lists the main points of the proposed regulatory framework for AI.

The Act seeks to codify the high standards of the EU trustworthy AI paradigm, which requires AI to be legally, ethically and technically robust, while respecting democratic values, human rights and the rule of law. The draft regulation sets out core horizontal rules for the development, commodification and use of AI-driven products, services and systems within the territory of the EU, that apply to all industries.

Legal sandboxes fostering innovation

The EC aims to prevent the rules from stifling innovation and hindering the creation of a flourishing AI ecosystem in Europe. This is ensured by introducing various flexibilities, including the application of legal sandboxes that afford breathing room to AI developers.

Sophisticated ‘product safety regime’

The EU AI Act introduces a sophisticated ‘product safety framework’ constructed around a set of 4 risk categories. It imposes requirements for market entrance and certification of High-Risk AI Systems through a mandatory CE-marking procedure. To ensure equitable outcomes, this pre-market conformity regime also applies to machine learning training, testing and validation datasets.

Pyramid of criticality

The AI Act draft combines a risk-based approach based on the pyramid of criticality, with a modern, layered enforcement mechanism. This means, among other things, that a lighter legal regime applies to AI applications with a negligible risk, and that applications with an unacceptable risk are banned. Stricter regulations apply as risk increases.

Enforcement at both Union and Member State level

The draft regulation provides for the installation of a new enforcement body at Union level: the European Artificial Intelligence Board (EAIB). At Member State level, the EAIB will be flanked by national supervisors, similar to the GDPR’s oversight mechanism. Fines for violation of the rules can be up to 6% of global turnover, or 30 million euros for private entities.

CE-marking for High-Risk AI Systems

In line with my recommendations, Article 49 of the Act requires high-risk AI and data-driven systems, products and services to comply with EU benchmarks, including safety and compliance assessments. This is crucial because it requires AI infused products and services to meet the high technical, legal and ethical standards that reflect the core values of trustworthy AI. Only then will they receive a CE marking that allows them to enter the European markets. This pre-market conformity mechanism works in the same manner as the existing CE marking: as safety certification for products traded in the European Economic Area (EEA).

Trustworthy AI by Design: ex ante and life-cycle auditing

Responsible, trustworthy AI by design requires awareness from all parties involved, from the first line of code. Indispensable tools to facilitate this awareness process are AI impact and conformity assessments, best practices, technology roadmaps and codes of conduct. These tools are executed by inclusive, multidisciplinary teams, that use them to monitor, validate and benchmark AI systems. It will all come down to ex ante and life-cycle auditing.

The new European rules will forever change the way AI is formed. Pursuing trustworthy AI by design seems like a sensible strategy, wherever you are in the world.

Meer lezen

Democratic Countries Should Form a Strategic Tech Alliance

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2021

New Stanford innovation policy research: “Democratic Countries Should Form a Strategic Tech Alliance”.

Exporting values into society through technology

China’s relentless advance in Artificial Intelligence (AI) and quantum computing has engendered a significant amount of anxiety about the future of America’s technological supremacy. The resulting debate centres around the impact of China’s digital rise on the economy, security, employment and the profitability of American companies. Absent in these predominantly economic disquiets is what should be a deeper, existential concern: What are the effects of authoritarian regimes exporting their values into our society through their technology? This essay will address this question by examining how democratic countries can, or should respond, and what you can do about it to influence the outcome.

Towards a global responsible technology governance framework

The essay argues that democratic countries should form a global, broadly scoped Strategic Tech Alliance, built on mutual economic interests and common moral, social and legal norms, technological interoperability standards, legal principles and constitutional values. An Alliance committed to safeguarding democratic norms, as enshrined in the Universal Declaration of Human Rights (UDHR) and the International Covenant on Civil and Political Rights (ICCPR). The US, the EU and its democratic allies should join forces with countries that share our digital DNA, institute fair reciprocal trading conditions, and establish a global responsible technology governance framework that actively pursues democratic freedoms, human rights and the rule of law.

Two dominant tech blocks with incompatible political systems

Currently, two dominant tech blocks exist that have incompatible political systems: the US and China. The competition for AI and quantum ascendancy is a battle between ideologies: liberal democracy mixed with free market capitalism versus authoritarianism blended with surveillance capitalism. Europe stands in the middle, championing a legal-ethical approach to tech governance.

Democratic, value-based Strategic Tech Alliance

The essay discusses political feasibility of cooperation along transatlantic lines, and examines arguments against the formation of a democratic, value-based Strategic Tech Alliance that will set global technology standards. Then, it weighs the described advantages of the establishment of an Alliance that aims to win the race for democratic technological supremacy against disadvantages, unintended consequences and the harms of doing nothing.

Democracy versus authoritarianism: sociocritical perspectives

Further, the essay attempts to approach the identified challenges in light of the ‘democracy versus authoritarianism’ discussion from other, sociocritical perspectives, and inquires whether we are democratic enough ourselves.

How Fourth Industrial Revolution (4IR) technology is shaping our lives

The essay maintains that technology is shaping our everyday lives, and that the way in which we design and utilize our technology is influencing nearly every aspect of the society we live in. Technology is never neutral. The essay describes that regulating emerging technology is an unending endeavour that follows the lifespan of the technology and its implementation. In addition, it debates how democratic countries should construct regulatory solutions that are tailored to the exponential pace of sustainable innovation in the Fourth Industrial Revolution (4IR).

Preventing authoritarianism from gaining ground

The essay concludes that to prevent authoritarianism from gaining ground, governments should do three things: (1) inaugurate a Strategic Tech Alliance, (2) set worldwide core rules, interoperability & conformity standards for key 4IR technologies such as AI, quantum and Virtual Reality (VR), and (3) actively embed our common democratic norms, principles and values into the architecture and infrastructure of our technology.

Meer lezen

We hebben dringend een recht op dataprocessing nodig

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/we-dringend-recht-dataprocessing-nodig/

Bij een datagedreven economie hoort een gezond ecosysteem voor machine learning en artificial intelligence. Mauritz Kop beschrijft de juridische problemen en oplossingen hierbij. “We hebben dringend een recht op dataprocessing nodig.”

5 juridische obstakels voor een succesvol AI-ecosysteem

Eerder schreef ik dat vraagstukken over het (intellectueel) eigendom van data, databescherming en privacy een belemmering vormen voor het (her)gebruiken en delen van hoge kwaliteit data tussen burgers, bedrijven, onderzoeksinstellingen en de overheid. Er bestaat in Europa nog geen goed functionerend juridisch-technisch systeem dat rechtszekerheid en een gunstig investeringsklimaat biedt en bovenal is gemaakt met de datagedreven economie in het achterhoofd. We hebben hier te maken met een complex probleem dat in de weg staat aan exponentiële innovatie.

Auteursrechten, Privacy en Rechtsonzekerheid over eigendom van data

De eerste juridische horde bij datadelen is auteursrechtelijk van aard. Ten tweede kunnen er (sui generis) databankenrechten van derden rusten op (delen van) de training-, testing- of validatiedataset. Ten derde zullen bedrijven na een strategische afweging kiezen voor geheimhouding, en niet voor het patenteren van hun technische vondst. Het vierde probleempunt is rechtsonzekerheid over juridisch eigendom van data. Een vijfde belemmering is de vrees voor de Algemene verordening gegevensbescherming (AVG). Onwetendheid en rechtsonzekerheid resulteert hier in risicomijdend gedrag. Het leidt niet tot spectaculaire Europese unicorns die de concurrentie aankunnen met Amerika en China.

Wat is machine learning eigenlijk?

Vertrouwdheid met technische aspecten van data in machine learning geeft juristen, datawetenschappers en beleidsmakers de mogelijkheid om effectiever te communiceren over toekomstige regelgeving voor AI en het delen van data.

Machine learning en datadelen zijn van elementair belang voor de geboorte en de evolutie van AI. En daarmee voor het behoud van onze democratische waarden, welvaart en welzijn. Een machine learning-systeem wordt niet geprogrammeerd, maar getraind. Tijdens het leerproces ontvangt een computer uitgerust met kustmatige intelligentie zowel invoergegevens (trainingdata), als de verwachte, bij deze inputdata behorende antwoorden. Het AI-systeem moet zelf de bijpassende regels en wetmatigheden formuleren met een kunstmatig brein. Algoritmische, voorspellende modellen kunnen vervolgens worden toegepast op nieuwe datasets om nieuwe, correcte antwoorden te produceren.

Dringend nodig: het recht op dataprocessing

De Europese Commissie heeft de ambitie om datasoevereiniteit terug te winnen. Europa moet een internationale datahub worden. Dit vereist een modern juridisch raamwerk in de vorm van de Europese Data Act, die in de loop van 2021 wordt verwacht. Het is naar mijn idee cruciaal dat de Data Act een expliciet recht op dataprocessing bevat.

Technologie is niet neutraal

Tegelijkertijd kan de architectuur van digitale systemen de sociaal-maatschappelijke impact van digitale transformatie reguleren. Een digitaal inclusieve samenleving moet technologie actief vormgeven. Technologie an sich is namelijk nooit neutraal. Maatschappelijke waarden zoals transparantie, vertrouwen, rechtvaardigheid, controle en cybersecurity moeten worden ingebouwd in het design van AI-systemen en de benodigde trainingdatasets, vanaf de eerste regel code.

Meer lezen

Data delen als voorwaarde voor een succesvol AI-ecosysteem

Trainingsdatasets voor kunstmatige intelligentie: enkele juridische aspecten

Data delen (data sharing) of liever het vermogen om hoge kwaliteit trainingsdatasets te kunnen analyseren om een AI model -zoals een generative adversarial network- te trainen, is een voorwaarde voor een succesvol AI-ecosysteem in Nederland.

In ons turbulente technologische tijdperk nemen fysieke aanknopingspunten als papier of tastbare producten binnen de context van data -of informatie- in belang af. Informatie is niet langer aan een continent, staat of plaats gebonden. Informatietechnologie zoals kunstmatige intelligentie ontwikkelt zich in een dermate hoog tempo, dat de juridische problemen die daaruit voortvloeien in belangrijke mate onvoorspelbaar zijn. Hierdoor ontstaan -kort gezegd- problemen voor tech startups en scaleups.

In dit artikel een serie -mede in onderlinge samenhang te beschouwen aanbevelingen, suggesties en inventieve oplossingen om anno 2020 tot waardevolle nationale en Europese dataketens te komen.

Data donor codicil

Introductie van een Europees (of nationaal) data donor codicil waarmee een patiënt of consument vrijwillig data kan doneren aan de overheid en/of het bedrijfsleven, AVG-proof. Hier kunnen waardeketens worden gecreëerd door de sensor data van medische Internet of Things (IoT) apparaten en smart wearables van overheidswege te accumuleren. Anoniem of met biomarkers.

Data interoperabel en gestandaardiseerd

Unificatie van data uitwisselingsmodellen zodat deze interoperabel en gestandaardiseerd worden in het IoT. Een voorbeeld is een Europees EPD (Elektronisch Patiënten Dossier), i.e een Electronic Healthcare Record (EMR). AI certificering en standaardisatie (zoals ISO, ANSI, IEEE / IEC) dient bij voorkeur niet te worden uitgevoerd door private partijen met commerciële doelstellingen, maar door onafhankelijke openbare instanties (vergelijk het Amerikaanse FDA).

Machine generated (non) personal data

Een andere categorisering die we kunnen maken is enerzijds publieke (in handen van de overheid) machine generated (non) personal data, en private machine generated (non) personal data. Met machine generated data bedoelen we met name informatie en gegevens die continue door edge devices worden gegenereerd in het Internet of Things (IoT). Deze edge devices staan via edge (of fod) nodes (zenders) in verbinding met datacenters die samen met edge servers de cloud vormen. Deze architectuur noemen we ook wel edge computing.

Juridische dimensie

Data, of informatie heeft een groot aantal juridische dimensies. Aan data delen kleven potentieel intellectueel eigendomsrechtelijke (verbodsrecht en vergoedingsrecht), ethische, grondrechtelijke (privacy, vrijheid van meningsuiting), contractenrechtelijke en internationaal handelsrechtelijke aspecten. Juridisch eigendom op data bestaat anno 2020 niet omdat het -vanuit goederenrechtelijk oogpunt- niet als zaak wordt gekwalificeerd. Data heeft wel vermogensrechtelijke aspecten.

Meer lezen