EU Artificial Intelligence Act: The European Approach to AI

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 2/2021

New Stanford tech policy research: “EU Artificial Intelligence Act: The European Approach to AI”.

EU regulatory framework for AI

On 21 April 2021, the European Commission presented the Artificial Intelligence Act. This Stanford Law School contribution lists the main points of the proposed regulatory framework for AI.

The Act seeks to codify the high standards of the EU trustworthy AI paradigm, which requires AI to be legally, ethically and technically robust, while respecting democratic values, human rights and the rule of law. The draft regulation sets out core horizontal rules for the development, commodification and use of AI-driven products, services and systems within the territory of the EU, that apply to all industries.

Legal sandboxes fostering innovation

The EC aims to prevent the rules from stifling innovation and hindering the creation of a flourishing AI ecosystem in Europe. This is ensured by introducing various flexibilities, including the application of legal sandboxes that afford breathing room to AI developers.

Sophisticated ‘product safety regime’

The EU AI Act introduces a sophisticated ‘product safety framework’ constructed around a set of 4 risk categories. It imposes requirements for market entrance and certification of High-Risk AI Systems through a mandatory CE-marking procedure. To ensure equitable outcomes, this pre-market conformity regime also applies to machine learning training, testing and validation datasets.

Pyramid of criticality

The AI Act draft combines a risk-based approach based on the pyramid of criticality, with a modern, layered enforcement mechanism. This means, among other things, that a lighter legal regime applies to AI applications with a negligible risk, and that applications with an unacceptable risk are banned. Stricter regulations apply as risk increases.

Enforcement at both Union and Member State level

The draft regulation provides for the installation of a new enforcement body at Union level: the European Artificial Intelligence Board (EAIB). At Member State level, the EAIB will be flanked by national supervisors, similar to the GDPR’s oversight mechanism. Fines for violation of the rules can be up to 6% of global turnover, or 30 million euros for private entities.

CE-marking for High-Risk AI Systems

In line with my recommendations, Article 49 of the Act requires high-risk AI and data-driven systems, products and services to comply with EU benchmarks, including safety and compliance assessments. This is crucial because it requires AI infused products and services to meet the high technical, legal and ethical standards that reflect the core values of trustworthy AI. Only then will they receive a CE marking that allows them to enter the European markets. This pre-market conformity mechanism works in the same manner as the existing CE marking: as safety certification for products traded in the European Economic Area (EEA).

Trustworthy AI by Design: ex ante and life-cycle auditing

Responsible, trustworthy AI by design requires awareness from all parties involved, from the first line of code. Indispensable tools to facilitate this awareness process are AI impact and conformity assessments, best practices, technology roadmaps and codes of conduct. These tools are executed by inclusive, multidisciplinary teams, that use them to monitor, validate and benchmark AI systems. It will all come down to ex ante and life-cycle auditing.

The new European rules will forever change the way AI is formed. Pursuing trustworthy AI by design seems like a sensible strategy, wherever you are in the world.

Meer lezen

Democratic Countries Should Form a Strategic Tech Alliance

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2021

New Stanford innovation policy research: “Democratic Countries Should Form a Strategic Tech Alliance”.

Exporting values into society through technology

China’s relentless advance in Artificial Intelligence (AI) and quantum computing has engendered a significant amount of anxiety about the future of America’s technological supremacy. The resulting debate centres around the impact of China’s digital rise on the economy, security, employment and the profitability of American companies. Absent in these predominantly economic disquiets is what should be a deeper, existential concern: What are the effects of authoritarian regimes exporting their values into our society through their technology? This essay will address this question by examining how democratic countries can, or should respond, and what you can do about it to influence the outcome.

Towards a global responsible technology governance framework

The essay argues that democratic countries should form a global, broadly scoped Strategic Tech Alliance, built on mutual economic interests and common moral, social and legal norms, technological interoperability standards, legal principles and constitutional values. An Alliance committed to safeguarding democratic norms, as enshrined in the Universal Declaration of Human Rights (UDHR) and the International Covenant on Civil and Political Rights (ICCPR). The US, the EU and its democratic allies should join forces with countries that share our digital DNA, institute fair reciprocal trading conditions, and establish a global responsible technology governance framework that actively pursues democratic freedoms, human rights and the rule of law.

Two dominant tech blocks with incompatible political systems

Currently, two dominant tech blocks exist that have incompatible political systems: the US and China. The competition for AI and quantum ascendancy is a battle between ideologies: liberal democracy mixed with free market capitalism versus authoritarianism blended with surveillance capitalism. Europe stands in the middle, championing a legal-ethical approach to tech governance.

Democratic, value-based Strategic Tech Alliance

The essay discusses political feasibility of cooperation along transatlantic lines, and examines arguments against the formation of a democratic, value-based Strategic Tech Alliance that will set global technology standards. Then, it weighs the described advantages of the establishment of an Alliance that aims to win the race for democratic technological supremacy against disadvantages, unintended consequences and the harms of doing nothing.

Democracy versus authoritarianism: sociocritical perspectives

Further, the essay attempts to approach the identified challenges in light of the ‘democracy versus authoritarianism’ discussion from other, sociocritical perspectives, and inquires whether we are democratic enough ourselves.

How Fourth Industrial Revolution (4IR) technology is shaping our lives

The essay maintains that technology is shaping our everyday lives, and that the way in which we design and utilize our technology is influencing nearly every aspect of the society we live in. Technology is never neutral. The essay describes that regulating emerging technology is an unending endeavour that follows the lifespan of the technology and its implementation. In addition, it debates how democratic countries should construct regulatory solutions that are tailored to the exponential pace of sustainable innovation in the Fourth Industrial Revolution (4IR).

Preventing authoritarianism from gaining ground

The essay concludes that to prevent authoritarianism from gaining ground, governments should do three things: (1) inaugurate a Strategic Tech Alliance, (2) set worldwide core rules, interoperability & conformity standards for key 4IR technologies such as AI, quantum and Virtual Reality (VR), and (3) actively embed our common democratic norms, principles and values into the architecture and infrastructure of our technology.

Meer lezen

Een Juridisch-Ethisch Kader voor Quantum Technologie

Een bewerkte versie van deze bijdrage is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/we-nederland-voorbereiden-kwantumtoekomst/

Nederland moet zich voorbereiden op de toepassing van kwantumtechnologie, zegt jurist en Stanford Law School Fellow Mauritz Kop. Op het gebied van regulering, intellectueel eigendom en ethiek is er nog veel werk aan de winkel.

De Quantum Age roept veel juridische vragen op

Het gedrag van de natuur op de kleinste schaal kan vreemd en contra-intuïtief zijn. Hoe kunnen beleidsmakers de toepassingsgebieden van kwantumtechnologie, zoals quantum computing, quantum sensing en het quantum internet op een maatschappelijk verantwoorde manier reguleren? Dienen ethische kwesties een rol te spelen in regulering? De Quantum Age roept veel juridische vragen op.

Hoe kunnen we kwantumtechnologie reguleren?

Regulering van transformatieve technologie is een dynamisch, cyclisch proces dat de levensduur van de technologie en de toepassing volgt. Het vraagt om een flexibel wetgevend systeem dat zich snel kan aanpassen aan veranderende omstandigheden en maatschappelijke behoeften.

De eerste regelgevende stap om te komen tot een bruikbaar juridisch-ethisch kader is het koppelen van de Trustworthy AI-principes aan kwantumtechnologie. Die vullen we vervolgens aan met horizontale, overkoepelende regels die recht doen aan de unieke natuurkundige eigenschappen van quantum. Aan deze horizontale kernregels voegt de wetgever tenslotte verticale, industrie- of sectorspecifieke voorschriften toe. Die verticale voorschriften en gedragscodes zijn risk-based en houden rekening met de uiteenlopende behoeftes van economische sectoren waar het duurzame innovatiestimuli betreft. Zo ontstaat een gedifferentieerde, sectorspecifieke benadering aangaande incentives en risks.

Bewustwording van ethische, juridische en sociale aspecten

Een belangrijk onderdeel van het synchroniseren van onze normen, waarden, standaarden en principes met kwantumtechnologie is het creëren van bewustwording van de ethische, juridische en sociale aspecten ervan. De architectuur van systemen die zijn uitgerust met kwantumtechnologie moet waarden vertegenwoordigen die wij als samenleving belangrijk vinden.

Vooruitlopend op spectaculaire doorbraken in de toepassing van kwantumtechnologie is de tijd nu rijp voor regeringen, onderzoeksinstellingen en de markt om regulatoire en intellectuele eigendomsstrategieën voor te bereiden die passen bij de power van de technologie.

Nederland moet zich voorbereiden op een kwantumtoekomst, want die komt eraan.

Meer lezen

We hebben dringend een recht op dataprocessing nodig

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/we-dringend-recht-dataprocessing-nodig/

Bij een datagedreven economie hoort een gezond ecosysteem voor machine learning en artificial intelligence. Mauritz Kop beschrijft de juridische problemen en oplossingen hierbij. “We hebben dringend een recht op dataprocessing nodig.”

5 juridische obstakels voor een succesvol AI-ecosysteem

Eerder schreef ik dat vraagstukken over het (intellectueel) eigendom van data, databescherming en privacy een belemmering vormen voor het (her)gebruiken en delen van hoge kwaliteit data tussen burgers, bedrijven, onderzoeksinstellingen en de overheid. Er bestaat in Europa nog geen goed functionerend juridisch-technisch systeem dat rechtszekerheid en een gunstig investeringsklimaat biedt en bovenal is gemaakt met de datagedreven economie in het achterhoofd. We hebben hier te maken met een complex probleem dat in de weg staat aan exponentiële innovatie.

Auteursrechten, Privacy en Rechtsonzekerheid over eigendom van data

De eerste juridische horde bij datadelen is auteursrechtelijk van aard. Ten tweede kunnen er (sui generis) databankenrechten van derden rusten op (delen van) de training-, testing- of validatiedataset. Ten derde zullen bedrijven na een strategische afweging kiezen voor geheimhouding, en niet voor het patenteren van hun technische vondst. Het vierde probleempunt is rechtsonzekerheid over juridisch eigendom van data. Een vijfde belemmering is de vrees voor de Algemene verordening gegevensbescherming (AVG). Onwetendheid en rechtsonzekerheid resulteert hier in risicomijdend gedrag. Het leidt niet tot spectaculaire Europese unicorns die de concurrentie aankunnen met Amerika en China.

Wat is machine learning eigenlijk?

Vertrouwdheid met technische aspecten van data in machine learning geeft juristen, datawetenschappers en beleidsmakers de mogelijkheid om effectiever te communiceren over toekomstige regelgeving voor AI en het delen van data.

Machine learning en datadelen zijn van elementair belang voor de geboorte en de evolutie van AI. En daarmee voor het behoud van onze democratische waarden, welvaart en welzijn. Een machine learning-systeem wordt niet geprogrammeerd, maar getraind. Tijdens het leerproces ontvangt een computer uitgerust met kustmatige intelligentie zowel invoergegevens (trainingdata), als de verwachte, bij deze inputdata behorende antwoorden. Het AI-systeem moet zelf de bijpassende regels en wetmatigheden formuleren met een kunstmatig brein. Algoritmische, voorspellende modellen kunnen vervolgens worden toegepast op nieuwe datasets om nieuwe, correcte antwoorden te produceren.

Dringend nodig: het recht op dataprocessing

De Europese Commissie heeft de ambitie om datasoevereiniteit terug te winnen. Europa moet een internationale datahub worden. Dit vereist een modern juridisch raamwerk in de vorm van de Europese Data Act, die in de loop van 2021 wordt verwacht. Het is naar mijn idee cruciaal dat de Data Act een expliciet recht op dataprocessing bevat.

Technologie is niet neutraal

Tegelijkertijd kan de architectuur van digitale systemen de sociaal-maatschappelijke impact van digitale transformatie reguleren. Een digitaal inclusieve samenleving moet technologie actief vormgeven. Technologie an sich is namelijk nooit neutraal. Maatschappelijke waarden zoals transparantie, vertrouwen, rechtvaardigheid, controle en cybersecurity moeten worden ingebouwd in het design van AI-systemen en de benodigde trainingdatasets, vanaf de eerste regel code.

Meer lezen

Machine Learning & EU Data Sharing Practices

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2020

New multidisciplinary research article: ‘Machine Learning & EU Data Sharing Practices’.

In short, the article connects the dots between intellectual property (IP) on data, data ownership and data protection (GDPR and FFD), in an easy to understand manner. It also provides AI and Data policy and regulatory recommendations to the EU legislature.

As we all know, machine learning & data science can help accelerate many aspects of the development of drugs, antibody prophylaxis, serology tests and vaccines.

Supervised machine learning needs annotated training datasets

Data sharing is a prerequisite for a successful Transatlantic AI ecosystem. Hand-labelled, annotated training datasets (corpora) are a sine qua non for supervised machine learning. But what about intellectual property (IP) and data protection?

Data that represent IP subject matter are protected by IP rights. Unlicensed (or uncleared) use of machine learning input data potentially results in an avalanche of copyright (reproduction right) and database right (extraction right) infringements. The article offers three solutions that address the input (training) data copyright clearance problem and create breathing room for AI developers.

The article contends that introducing an absolute data property right or a (neighbouring) data producer right for augmented machine learning training corpora or other classes of data is not opportune.

Legal reform and data-driven economy

In an era of exponential innovation, it is urgent and opportune that both the TSD, the CDSM and the DD shall be reformed by the EU Commission with the data-driven economy in mind.

Freedom of expression and information, public domain, competition law

Implementing a sui generis system of protection for AI-generated Creations & Inventions is -in most industrial sectors- not necessary since machines do not need incentives to create or invent. Where incentives are needed, IP alternatives exist. Autonomously generated non-personal data should fall into the public domain. The article argues that strengthening and articulation of competition law is more opportune than extending IP rights.

Data protection and privacy

More and more datasets consist of both personal and non-personal machine generated data. Both the General Data Protection Regulation (GDPR) and the Regulation on the free flow of non-personal data (FFD) apply to these ‘mixed datasets’.

Besides the legal dimensions, the article describes the technical dimensions of data in machine learning and federated learning.

Modalities of future AI-regulation

Society should actively shape technology for good. The alternative is that other societies, with different social norms and democratic standards, impose their values on us through the design of their technology. With built-in public values, including Privacy by Design that safeguards data protection, data security and data access rights, the federated learning model is consistent with Human-Centered AI and the European Trustworthy AI paradigm.

Meer lezen